Near-Infrared Laser May Enhance Cancer Immunotherapy

With the promise of immunotherapy in fighting cancer, new research is examining a treatment that may potentially offer greater efficacy by using light to control the immune system.

Immunotherapy involves the body using its own immune system to battle cancer. However, researchers discovered a new method called optogenetics, which genetically engineers cells in order to produce proteins from light sensitive microbes.

This causes nerve cells to send or stop sending nerve impulses when exposed to a certain light color.

"Although neuroscientists have been using light to stimulate neurons for years, this is the first time the technique, called optogenetics, has been used in the immune system," said researcher Yubin Zhou, PhD. "Neuroscientists have learned a lot about brain circuits using the technique, and now researchers in many other fields are giving it a try."

In order to use this method on the immune system, researchers had to perform modifications to the technique. This proved to be difficult, because immune cells don’t use tiny electrical impulses to communicate like nerve cells do. Immune cells are also constantly on the move and found deep within the body, making it difficult to get light to them.

During the study published in eLife, researchers genetically engineered the immune cells to allow a gate-controlling protein to become light sensitive. They were able to achieve this by using a near-infrared laser beam that penetrates deep (1-2 centimeters) into the tissue to allow a nanoparticle to turn the light into blue light, thus forcing the gates of the protein to open.

"We collaborated with Dr. Gang Han at the University of Massachusetts Medical School who does bionanotechnology and photomedicine development," Zhou said. "Together, we were able to combine state-of-the-art optogenetic approaches with cutting edge nanotechnology. The technique reduced tumor size and metastasis, so there are lots of applications.”

The advantage of this model is that it only activates dendritic or T-cells in a part of the body that is near the draining lymph nodes or tumor. It also can be turned on and off based on need.

"Other scientists will likely use the technique to help them study immune, heart and other types of cells that use calcium to perform their tasks," Zhou said. "It's quite a cool technology. With these tools, we can now not only answer fundamental questions of science that we never could before but also translate it into the clinic for disease intervention."

Stay up to date on the latest news in specialty pharmacy by getting Specialty Pharmacy Times in your mailbox or inbox for free!

Click here to sign up for free for the bi-monthly Specialty Pharmacy Times print journal delivered to your address.

Click here to sign up for our email newsletters delivered every Monday, Wednesday, and Friday, in addition to breaking news alerts.

Click here to follow us on Facebook. 

Click here to follow us on Twitter. 

Click here to join our LinkedIn group. 

Related Articles

The presence of human papillomavirus type 16 antibodies marked an approximately 100-fold increase in risk of throat cancer in white individuals.
Colon cancer may spread to other parts of the body before original tumors are clinically detectable.
Top news of the day from across the health care landscape.
Company Profile >
Industry Guide >
Market News >
Peer Exchange >
Conferences >
Subscribe >
Specialty Times Resources
About Us
Contact Us
Terms & Conditions
MJH Associates >
Pharmacy Times
American Journal of Managed Care
MD Magazine
Targeted Oncology
Physicians' Education Resource
Pharmacy & Healthcare Communications, LLC
2 Clarke Drive
Suite 100
Cranbury, NJ 08512
P: 609-716-7777
F: 609-716-4747

Copyright Specialty Pharmacy Times 2006-2019
Pharmacy & Healthcare Communications, LLC. All Rights Reserved.